CuteSDR Technical Manual

Ver. 1.01

Oct 20, 2011

by
Moe Wheatley, AE4JY

Wwww.moetronix.com

This document describes the technical details of the Qt based SDR Interface Program CuteSDR.

http://www.moetronix.com/

Table of Contents

1. CULESDIR OVEIVIBW.......eceeiiiiiiiiiiiii i mmsee e e s e e e ra s s e s e e s s mmmmEEeeeeeeeeesea s e e e s s smmmmEEEeeeeesssassaaaassssnnnnnnssssssennnnnnn 5
(O 1o o AR U S 5
T.2. BASIC FOALUIES. ...ttt ettt et 222 e e e e e e et s e e e e nnn e 5
IR T (=T =T 01 (= 1TSS 5
Tud LICEINISE. ...ttt ettt 4o oo oo oot A ettt e e e e e e e e e e e e ettt e r e eaaes 5

P 031 1=8S] 1 3 € L0 0o o 6
D IR = 1 T 0o Y 110 K 6
D (=Y o 10 I 00 g1 o) S 7

2280t 1 1= /1Y T SRR 7
2.2.2 SEIUP IMEBNU.....iee ettt e oottt e e oo a bttt e e oA e b e et e e e e b et e e e e e R b e e e e e e e e e e e e e e e e aaaaaaaaaas 7
2 T N 1= 0o Q8 /1Y o 1 S 8
B To T LT = T o I8 1Y 1= o 1 SRR 8
2.2.5 SDR MENU. .. .ettiiiie ettt ettt e ettt e e ettt e e e et e e e e e s s baeeeeaa s st et e e e e nnbaeeae e e nnbaeeee e e s raeaaeaaanrreeaeaaeaaaaaaaaaeaeees 8
B B 1T o] F= 1Y Y/ 1= o 1 PR EUPPPPRT 9
A A 1= o ¢ Lo o =Y oL TP 9
B o o101 1Y 1= o U PSSP 9

3. CuteSDR Software Archit@CtUre............ciiiiiicrei e s e e e e me e e e e mnr e e e e e e e e e nnnnnnnnns 10
BT BilAS EYE VIBW.......eeeeeeeeee ettt e ettt ettt e e e e e e e e e e e e e ettt ta et e e e e a e e aaaanaaaaaaaaes 10
3.2. SOMWAIE ClASS SUIMIMAIY ...ttt e e et e e oottt e e e ettt e e e e sttt e e e e asntsneeaeeanes 11

3.2.1 Display, Dialogs, CONTIOIS.coii ittt e e e e e st b e e e e e e anbbe e e e e e e snbe e e e e e e snbeeeaaaeens 11
R 0 D 1]l U Vo) 3OS 11
0 B [(=3 =TSSP 12

4. Technical DESCHIPHION......cieieii e m s e e e e e e e e ee s sa s s e e asammssee e e e eeeeseessansnnssssssnnnnnnnnnn 13
R 1 =14 Yo (o 13
R U I 0] (=T - To = SR 13
R I VL= o1y Q[= - Lo = SRR 14

4.3.1 General ProtOCOI DESCIIPHION.uuuiiiiiiiiiiiieeee ettt e e e e e e e et e e e e e e aeeeeeeeeeeaeeaaa e eeaeaeens 15
4.3.2 SNDP Simple Network Discovery Protocol (CSdrDiscoverDIg Class).........uuuiiiiieeeeeeiiiiiiiiiiiee e 16
4.4. Radio Interface (CSArINIEITACE CIASS)...........uuuuueeeeeeiiiii ettt et e et e ettt ettt ee e e e e aaa e e e e aeeessaaas 17
g D ST el Vo o [0 = USSR 18
I o o (0 A O - T RPN 19
I 07D =Y ToTo 1] =1 (o gl O = 1S 20
4.7. CDOWRNCONVEI ClASS........cee ettt ettt e e e e e e e e e e e s s sttt e aaaaaeeeeasssssnnnssssnnnnnannannnenes 21
o (= To 01T o [V I = 1 F= 11 o) o P PP 22
4.7.2 DECIMALION STAGES.ceii ittt e ettt e e o e bttt e e e o bt ee e e e e e aabbe e e e e e e aabbe e e e e e aanbeneeeeeannaa 26
4.7.3 DeSIGN VENTICAION. ...ttt e e ettt e e e s bbbt e e e s et e e e s s 32
4.8. Primary Filtering (CFASHFIR CIASS)........... ettt oo oottt ea e e e e e e e eeeennnan 34
R T I 11 (=Tl =T T [o SRR 34

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 2

4.8.2 Filter IMPIemMEntatioN............eiiiii ettt e e e 37

R B 11 (=T Y F= 1Y T P 42
4.9. SMELEr (CSMEIEE CIASS)........ ettt ettt ettt e e ettt e e e sttt e e e e asussnnnnnnnnnnns 44
e B I T o | o PR 44
e [a0 =T 0 0 =T g1 ¢= L1 o] o HO PSS 45
O L Y L O (07 o [O = 1 SRR 46
4.10.1 Static AGC Gain DESIGN.... ...ttt e e et e et e e e e e e e e e e s e e et — s e et e et e aaaaaeeeeiasaeaeeeeessaaaaaaaeeens 47
4.10.2 DYNAMIC AGC DBSIGN....ciiiii ittt e et e et et e e et e eeeaeeeeeeese e e e abesbaaaeeeeeeaaaaeeeesasaaaaanaeeaaeees 49
[U R Y C IO =T 1] o o T T PO PO PPPPPPPRPPTPON 54
4.11. SSB Demodulation (CSSBDEMOA CIASS)........ccuuueeeeeieee ettt 59
4.12. AM Demodulation (CAMDEMOUA CIASS).........cuuiiieeeieeeeeeee ettt a e nea e e e 60
g 2 I I T oo PR UPPRR 60
o D 1] o] (=T g T=T o =1 (1] o TP UPPPPPPPRTRT 64
4.13. Synchronous AM Detector (CSamDemOd CIASS).........cccuuueeui et 65
T B I I T oo PP PRPPPPPPPRT 65
4.13.2 IMPIEMENTALION.ot et e et e e e e e e ettt et e e e e e e eeeeaeee et e e ee et st e e eaa e eeraaaaan 67
o B B B =Y o g Y=Yy o= 4o o U 69
4.14. FM Demodulation (CEFMDEMOA CIASS)...........cuiuueeiee ettt e et a e e et e e e e s s n s e 70
I 3 T o o PPN 70
4.14.2 FM Demodulator Implementation...............euuiiiii et a e e e e e 71
4.14.3 FM NOISE SQUEICH DESIGN.......uuuiiiiiiiiiiiiii et e e e e e e e e e e s e e et ee e e e e eeaaaaaeeeaaaeaeeeessanaaaaeeeeennes 72
4.14.4 FM Noise Squelch Implementation.............coo e e e e e e e e e e e e e e e e e 73
4.14.5 FM Demodulator/SQUEICH TeSHING...... i e e e e e e e e e e eas 74
4.15. WFM Demodulation (CWFMDEMOA CIASS)..........uueeeieiiee et 77
4.15.1 BroadCast FIM SIQNQlS.coooiiiiiiiiiii ettt e ettt e e et e e e e e e e e e e e e e 77
4.15.2 DeMOAUIBION PIrOCESS.eiiiiiiiiiiiee ettt e ettt e e e e b et e e e e aab b b e et e e s aabnr e e e e e e e e e as 79
I BRI (=T = o B T=Te o T [o o FO TP 85
4.16. RDS ENCOQING/DECOMTING......... ..ottt ettt eeannaaaeeaaaenns 91
o LG I B S IR Yo = B = Tt 10T T 91
4.16.2 RDS Signal DemoOdUIALION.coiiiiiiiiiie et e e e s e e e e s e e e e s aanee e e e e e 98
4.16.3 RDS Signal DECOMING.uuuuiiiiiiiiiiiiie ettt e e e e e e e e e e e e et a e e e e eeeaaaaaeeeesaaasassabaan e aeeeeeessaans 103
4.17. Fractional Resampler (CFractReSamPIEr CIASS).............cooeeeeeeeceeeeeeee ettt e et e e e e e e e aaassaa s 107
g g I T o | o PSPPSRI 107
o A 44T o] =T g T=T o1 =1 (T o T P 111
4.17.3 Fractional ReSampler Performance TeStNG........c.uuiiiiiiiiiie e 113
4.18. General Purp0Se FIR Filter (CFil CIASS)........co ettt 117
e B I g o] =T g =T o =1 1T o T PP 117
4.18.2 Kaiser-Bessel Filter Design Method............ooo i 118
4.18.3 Low Pass Implementation........... ..o et e e e e e e e e e e e e e neaaa s 120
4.18.4 Low Pass Filter VerifiCatioNn...... ..ottt e e e e e e e e e e e e e s 121
4.18.5 High Pass Implementation. ettt e et e e e e e e e e e e e e e eeeaaaan s 122
4.18.6 High Pass VErifiCatiON..........ooiiiiiiiiiiei et e e e e e e e e st e e e e e e nb e e e e e ennnbaeeeeeaeas 123
4.18.7 Hilbert Filter Pair GENEIatioN..........ciiiiiiiiiie et e e e et e e e s e st e e e e e e e e e e e eaaaaaeeaeeeeeeees 124
4.79. 1IR FiltErS (Clir ClIASS)........eeeeeeeeeeeeeeee ettt e e e e e e et e et ettt sttt e et e e e e e e e eeess s s s s s ssennanaaaaaaaaasees 126
e Ty I T o | o PSPPSRI 126
4.19.2 LoW Pass IMpPlemeEntation..............ooiiiiiiie et a e e e 127
4.19.3 High Pass ImMplementation...........o.eeeiii et e e s e e e e e e e e e e e 128
4.19.4 Band Pass IMplementation...............eooii e a e e e 129
4.19.5 Band Reject (Notch) Implementation......... ..o e 130
o RN Ol a1 (=T Y =T g1 o= i o o O PP 131

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 3

4.20. Sound Card Output (CSOUNAOUL CIASS).....cc.coieeeeee et
2 B (o [0 1= 0 0= o1 RS
S I [a] o] (=T 0 T o1 e= 11T o TSRS

4.21. NOIS€ ProCeSSiNG (CINOISEPIOC). ettt et e e e e e e e e e e e aaasnsnnsnennes

4.22. Test Bench TOOI(CTESIBENCH CIASS).........ccuiuueeiieeeeie ettt e et a e e et a e e et e e e e essreaeaeaeaaaeees
4.22.1 SOWAIE INTEITACE. .. .cei ittt ettt e e e ettt e e e e ae et e e e s anssaeeeeeaanssseeeesanssaeeeesanssnaeaaeneens

4.23. CPU Performance Tool (Performance.cpp MOQUIE).....................uumeeeeeeeeiieieeeeeeeeeeeseeeeieeeeeeaaa e eaaasaaa s

LI LT3 o= | = T L= 0 10 KT =] 0 Y

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

1. CuteSDR Overview

1.1. Concept

The CuteSDR project is provided as an example program that implements all the basic functionality of a software
defined receiver using the multi OS Qt development platform. All user interface, DSP, and network interface modules are
written in C++ and no other libraries are required other than those that are provided by the Qt system.

The goal is for other developers to be able to use this project as a template for developing their own custom
applications. The code is modular and reasonably well documented so can also be used as a learning tool or just for the
curious.

The design philosophy was to have a minimal featured user interface and concentrate on the DSP aspects of the
program. Implementing GUI interfaces is well covered in the literature and also specifically by various Qt resources such
as videos and extensive help documentation. The specific DSP structures and algorithms needed to implement basic
receiver functionality is not so well understood or explained and is not a normal programming skill taught to most software
engineers.

This paper will briefly cover the GUI code but will primarily concentrate on the design decisions and algorithms
required to perform basic radio functions. The methods described here are by no means the only or best way to
implement a software defined receiver but are functional and reasonably high performance.

1.2. Basic Features

The user interface is a basic GUI design which has a power vs frequency display using a 2D plot as well as a
scrolling waterfall type display where color indicates intensity.

A graphical display of current receive frequency and filter bandwidth allows signal tuning and bandwidth adjustment
using a mouse, its buttons and scroll wheel.

Radio center frequency, demodulator frequency, as well as various display scaling controls are provided on the main
screen. All other setup functions are organized in pull down menus.

Several basic demodulation modes are implemented such as AM, SSB, CW, and FM. A simple UDP discovery
scheme allows easy setup and discovery of networked radios.

Only RFSPACE Inc. SDR's are supported using the network interface. www.rfspace.com

1.3. Prerequisites

This document is aimed at a technical audience with a basic knowledge of math and digital signal processing
fundamentals. Signal processing is primarily performed using complex data samples so a basic understanding of complex
(I/Q) data and operations on complex data is needed. This concept is not that difficult and can be found in any beginning
DSP book. The idea of negative frequency may raise some eyebrows, but the idea is no different than thinking of
negative velocity such as when your car is moving backwards instead of forwards and describing it as negative speed.

The DSP blocks can be used without much knowledge of how they work except if one wants to modify or add to
them.

1.4.License

The source code is released under the Simplified BSD open source license and can be used in open source projects
or commercial projects as long as you don't claim the code as your own design. It is hoped that unless a derived work is
to be used in a closed source commercial product, that the author will also make their source code for improvements
available to the community.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 5

http://Www.rfspace.com/

2. CuteSDR GUI Controls

2.1. Main Controls

= CuteSdr 1.00 Alpha 15

File Setp Demod About

7,035.1OOKH2 Max dB -55 dE *
Span 300 KHz 3 751 50.000kKHz)

MetSDR Running 2 ppm

WU Lo= -500 Hi= 500 |5 d&/Div w

The main screen has a 2D and Waterfall display of the radio spectrum. Two frequency controls are used to vary the
radio center frequency and the demodulation frequency.

Three spin controls allow adjusting the screen span, vertical scale, and vertical offset.

A Start/Stop button is used to control the run state of the radio and program.

An S-Meter is implemented to display signal strength and a slider is used to adjust audio volume.

All other program control items are accessed through pull down menus from the top menu bar.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 6

2.2. Menu Controls

221 File Menu

The File Menu can be used to exit the program or select the “Always On Top” mode to keep on top of other
applications.

= CuteSdr 1.00

Setup Demod

Exit
AlwaysOnTop

2.2.2 Setup Menu
The Setup Menu contains sub menus for setting up various program items.

Metwark
SoundCard
=DF.
Display

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

2.2.3 Network Menu

The Network Menu is used to select the IP address and Port number of the desired SDR to connect to.

Pressing the “Find SDR's” button invokes an automatic discovery menu that lists all available RFSPACE SDR's

that are currently on the network. The desired one can then be selected and its address and port are filled in.

Currently the RFSPACE SDR-IP and NetSDR are supported directly.

The SDR-14 and SDR-1Q can be used but require running a small server application(SDRxxServer.exe) on a
Windows machine to allow the USB devices to talk to the network. This server application is installed with SpectraVue
and is located in the folder where Spectavue.exe is placed.

TOPIP Adr | (192 /1684 1 /100
TCP Port NetSDR

X

Find SDR's

= SDR. Discover

Find S0R's

1 sorig
HetSDR_SH=KYODDO0E._[P=192. 164

SN=:%123456 IP=192,168.1,103 Paort=5000%
,1,100 Port=50001

|D0ub\e Click on Enfry to Viewaditi

I Double Click on Entry to Select

2.2.4 Sound Card Menu

This menu is used to select the output sound card for the receiver. The input sound card selection is not used at this
time.

—
= SoundCard Setup 3@\
Input Sound Device
‘\u'irtual Cahle 1 v|
Qutput Sound Device
‘Realtek HD Audio output v| [stereo

22,5 SDR Menu

This menu allows one to select the radio sample rate/user bandwidth and RF attenuation. The available sample
rates and bandwidths are dependent upon which radio is connected.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 8

* SDR Setup iedd

REtSOR RF Gairfattn
& ode

) -10dB
O -z20dB
) -30de

Bandwidth | Sample Rate
() SDKHz 62,5 Ksps
() 200 KHz 250 Ksps
(%) 500 KHz 625 Ksps
() 1600 KHz 2000 Ksps

2.2.6 Display Menu

The Display Menu provides user control of various display and GUI settings.

The FFT size can be selected for the display.

The Mouse Click Resolution sets the coarseness of selecting a frequency on the display with the mouse.

The FFT averaging can be used to smooth out the display.

The Display update rate can be adjusted. Use a slower update rate on slower PC's.

The percentage of the screen used for the 2D display can be selected.

A “TestBench” screen can be displayed that is useful for debugging DSP code and provides a simple sweep
generator, a noise generator, and a pulsed sine generator. The signal stream can be displayed from various points in the
DSP signal chain and view in frequency or time domain with a basic triggered scope view.

= Display Setup
8192 ps v| | 100 He 3
FFT Size Mouse Click Resolukion
| 1 & | |2D UpdatesfSec &
FFT Aweraging Mazx Display Rate
[] useTestBench
2D Screen Size Yo I Ok] [Cancel

]

2.2.7 Demod Menu

The Demod menu is used to select the various demodulation parameters. This menu can also be invoked using the
right mouse button if the mouse is not in the display screen area.

= Demodulation Setup °|§|
Mode AGC
A
O AGC On Use Hang Timer
O sam Slope
O FM J 0
) UsE
Knee
O J -a0 dB
(&) Cwl
O L Hang
J 2000 S
FIM Squelch J
|cw Offset 600 Hz - |

2.2.8 About Menu

The About Menu displays program version and other program information.

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

3. CuteSDR Software Architecture

3.1.Birds Eye View

The following diagram shows the high level modular view of CuteSDR;:

USER
H

GUI Graphics
Interface Control
Radio Receiver Sound Card
Interface DSP Interface
Network
Interface

The user interface controls all the interaction with the user for setup and program operation.

The graphics control module creates and displays the signal graphs and plots as well as the mouse input controls for
the demodulation frequency and filter parameters.

The radio control module acts as a data “traffic cop” and parses and distributes data and status from the radio as well
as sends control messages to the radio.

The receiver DSP module performs decimation, filtering, and demodulation functions on the I/Q data stream from the
receiver.

The sound card interface manages the synchronization and buffering of demodulated data before being output to the
PC sound card.

The network interface manages the TCP control socket and the UDP 1/Q data stream to and from the radio.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 10

3.2. Software Class Summary

The following section lists all the C++ classes of CuteSDR and a brief description of their function. More detail will be
given to the DSP classes in later sections.

3.21 Display, Dialogs, Controls

MainWindow
This module is the top level Qt GUI class that manages overall program functionality such as menu control
and saving and recalling persistent settings. This module is the first Qt module to be initialized from main() and
from it is spawned all other modules and threads.
CPlotter
Frame Widget for primary FFT signal display, frequency tuning, and filter bandwidth adjustment.
CDemodSetupDig
Pop-up menu for changing demodulator and AGC settings.
CDisplayDlIg
Pop-up menu for changing various display parameters.
CEditNetDIg
Pop-up menu for changing network parameters.
CSdrDiscoverDlg
Pop-up menu for discovering and selecting a network connected RFSPACE radio.
CSdrSetupDig
Pop-up menu for changing various SDR parameters.
CNoiseProcDlg
Pop-up menu for changing noise processing parameters.
CSoundDlg
Pop-up menu for selecting the sound card
CIPEditWidget
Control widget for editing an IP address.

CSliderctrl

Control widget for slider control with text.
CFreqCitrl

Control widget for displaying and editing frequency.
CMeter

Control widget for displaying signal strength.
CTestBench

Control widget for Viewing internal signals and generating test data.
CAboutDIg

Pop-up menu for displaying program version and general information.
CRdsDecode

Performs basic decoding of RDS messages for display.

3.2.2 DSP Functions

CFit

Class that implements an FFT for use in displaying power versus frequency.
CDownConvert

Class to perform base band conversion of complex I/Q data and also sample rate decimation
CFastFIR

Class to implement fast convolution filtering of complex 1/Q data.
CFir

Class to implement a FIR filter with various design options.
Clir

Class to implement a IIR filter with various design options.
CFractResampler

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 11

Class to implement a fractional resampler for rate matching to the sound card.
CAgc
Class to implement automatic gain control.
CAmDemod
Class to implement AM demod.
CSamDemod
Class to implement Synchronous AM demod.
CDemodulator
Main class that manages all the demodulator functions.
CFmDemod
Class that performs narrow band FM demodulation.
CWFmDemod
Class that performs wide band FM demodulation and Stereo and RBDS broadcast decoding.
CWFmMod
Class that performs wide band FM modulation, Stereo, and RBDS encoding for testing.
CNoiseProc
Class that performs noise processing.
CSMeter
Class that derives the S-Meter data from the data stream for upper level GUI display.

3.2.3 Interface

CAscpMsg
Helper class to format radio messages to go to the radio and decompose messages from the radio.
CNetlOBase
Network base class that provides low level network interface and message assembly and queuing.
CUdpThread
Thread used by CNetlOBase class for managing low level UDP network data.
CTcpThread
Thread used by CNetlOBase class for managing low level TCP socket data from the radio.
ClQDataThread
Thread used by CNetlOBase class for removing 1/Q data from the FIFO and calling a derived function to
process the data for display and demodulation.
CSdrinterface
Class derived from CNetlOBase class to provide radio specific message parsing and creating ans sending
radio commands. This is the primary interface between the GUI and the radio.
CSoundOut
Class to process and synchronize output data from the demodulator and the sound card.
Cad6620
Helper class to create the msgs to load the filters in the SDR-IQ and SDR-14 radios.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 12

4. Technical Description
This section provides a detailed description of the major code modules.

4.1. MainWindow

The main entry point into the program and top level GUI interface is in the MainWindow class. Here all the GUI
signals and slots are managed as well as implementing a persistent data mechanism for saving/recalling program settings
between program sessions.

4.2. GUI Interface

The GUI interface uses standard Qt objects which are described in the Qt documentation and many other third party
videos and tutorials so will not be discussed here. The Qt Creator forms editor was used to manage all the GUI objects.
The main graphics screens are implemented by the Cplotter class. There are three Qpixmap objects that are used to
display the 2D spectrum and waterfall displays.
QPixmap m_2DPixmap;
QPixmap m_OverlayPixmap;
QPixmap m_WaterfallPixmap;

The WaterfallPixmap bitmap object creates a waterfall by scrolling down one line with the scroll(...) member function
then drawing the new line at the top of the bitmap.

m_WaterfallPixmap.scroll(0,1,0,0, w, h);
The 2D display has two pixmaps. One is an overlay that contains the grid, text, etc. information that does not change
with each screen update. To update the screen, this m_OverlayPixmap is copied into the m_2DPixmap then the 2D

spectrum data is drawn on top of that. This is faster since all the overlay graphics need only be created once.

m_2DPixmap = m_OverlayPixmap.copy(0,0,w,h);

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 13

4.3. Network Interface

The network interface consists of two independent data paths. A TCP socket connection between the radio and PC
is used for all the command and status messages. A separate UDP port is used just for the high speed 1/Q data. This
scheme provides a guaranteed connection for command and control while allowing the much more efficient UDP data
transfer method for the I/Q data stream. The design decision for this was to have a reliable connection to the radio that
could even be routed over the Internet for control and things like code updates etc. The UDP data channel allows much
higher data throughput over wireless networks where the loss of a few data packets does not affect performance. In
reality, on a small wired network like in your home, the UDP data stream very rarely drops a packet.

QUdpSocket

UDP
Thread

QTcpSocket

AssembleAscpMsg() FIFO

IQData
Thread

Base Class CNetlOBase

\ L Derived Class CSdrinterface
\4

SendAscpMsg() ParseAscpMsg() ProcesslQData()

In CuteSDR, the Class CNetlOBase implements the low level threads that manage the TCP, UDP, and the thread
that takes |Q Data from the FIFO and processes it.

The CNetlOBase class only cares about the message length and assembles a complete message. It then calls the

derived classes methods to actually decode the messages from the radios. This keeps the class independent of the type
of radio that is connected and all the specifics are implemented in the derived class.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 14

4.3.1 General Protocol Description

The RFSPACE radios use a simple protocol called ASCP(Amateur Station Control Protocol) that consists of a 2 byte

header followed by the message data. A “Control Item” is a 16 bit code representing the object that the message is

controlling or getting status from such as frequency, attenuation, bandwidth, etc. Data messages do not have the Control
Item field and transport data such as I/Q data.

Most control items are common to all RFSPACE radios but there are differences so one must look at the individual

protocol specifications when implementing an interface.
The basic message structure starts with a 16 bit header that contains the length of the block in bytes and also a 3 bit

type field. If the message is a Control Item, then a 16 bit Control Item code follows the header and contains the code

describing the object of the message block. This is followed by an optional number of parameter or data bytes associated

with this message. The byte order for all fields greater than 8 bits is "Little Endian" or least significant byte first.

Control Item Message block format:

| 16 bit Header(Isb msb) |

16 bit Control Item(Ilsb msb) | Parameter Bytes

Data Item Message block format:

| 16 bit Header(Isb msb) |

N-Data Bytes

The 16 bit header is defined as follows:

| 8 bit Length Isb

[3 bit type | 5 bit Length msb

The 13 bit Length parameter value is the total number of bytes in the message including this header. The range of

the message Length is 0 to 8191 bytes.

A special case for Data Items is that a message length of Zero is used to specify an actual message length of 8194
bytes(8192 data bytes + 2 header bytes). This allows data blocks of a power of 2 to be used which is useful in dealing

with FFT data.

The message type field is used by the receiving side to determine how to process this message block. It has a

different meaning depending upon whether the message is from the Host or Target.

3 bit Msg Message Message Type
Type field Source
000 Host Set Control ltem
001 Host Request Current Control Item
010 Host Request Control Item Range
011 Host Data ltem ACK from Host to Target
100 Host Host Data Item 0
101 Host Host Data ltem 1
110 Host Host Data ltem 2
111 Host Host Data ltem 3
000 Target Response to Set or Request Current Control ltem
001 Target Unsolicited Control ltem
010 Target Response to Request Control Item Range
011 Target Data Item ACK from Target to Host
100 Target Target Data Item O
101 Target Target Data Item 1
110 Target Target Data Item 2
111 Target Target Data Item 3

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

15

4.3.2 SNDP Simple Network Discovery Protocol (CSdrDiscoverDlg Class)

The network connected RFSPACE radios implement a simple discovery protocol that uses a UDP broadcast
message protocol similar to a DHCP transaction to find and display any connected network radio. This protocol is
described in depth in documentation on SourceForge where there is also an open source utility that uses the discover
protocol.

http://sourceforge.net/projects/sdrnetsetup/files/doc/

TheCSdrDiscoverDlg class implements a basic GUI that searches for all RFSPACE radios and provides a list of them

which the user can then select from.

PC UDP Broadcast
Port 48322 Discover Request Msg

Device
Port 48321

UDP Broadcast
Discover Response Msg

PC
Port 48322

The sequence of events are as follows for obtaining a devices parameters:

1. PC sends a UDP broadcast Request Message to a device that is listening on Port 48321.
2. The device then sends a UDP broadcast Response Message to the PC which is listening on Port 48322.
The response message contains its pertinent network parameters.
3.
The message packet contains a fixed 56 byte field followed by a variable length custom field that is specific to a
particular device.

struct DISCOVER_MSG

{ /ffixed common 56 byte fields
unsigned char length[2]; /Nlength of total message in bytes (little endian byte order)
unsigned char key[2]; /ffixed key key[0]==0x5A key[1]==0xA5
unsigned char op; //0==Request(to device) 1==Response(from device) 2 ==Set(to device)
char name[16]; //Device name string null terminated
char sn[16]; //Serial number string null terminated
unsigned char ipaddr[16]; //device IP address (little endian byte order)
unsigned char port[2]; //device Port number (little endian byte order)
unsigned char customfield; //Specifies a custom data field for a particular device

/Istart of optional variable custom byte fields
unsigned char Custom[N];

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

16

http://sourceforge.net/projects/sdrnetsetup/files/doc/

4.4. Radio Interface (CSdrinterface Class)

The CSdrinterface class is the derived class that provides all the specific radio communication and is the interface
between the GUI and the radio. It communicates up to the GUI using the normal Qt signal/slot methods.

GUI

Signals/Slots

Cad6620 |€—>] CSdrinterface

CFft CSoundOut

CDemodulator

The ProcesslQData() method performs the top level 1/Q data processing by generating the FFT display data, calling
the demodulator object, and calling the sound card output object. A secondary operation is provided for the SDR-IQ and
SDR-14 receivers that reduces the “NCO Spur” which is a spur that shows up at the center of the screen due to

quantization errors of the 16 bit integer data streams. By taking a long DC average of the | and Q data steams, the offset
can be subtracted out of the data stream.

A helper class, “Cad6620” is used to initialize the SDR-IQ and SDR-14 radios which need special hardware
initialization for each sample rate used.

Look-up tables are used to convert the GUI selection indexes into radio sample rates and also useable bandwidth
which are different with each radio supported.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 17

441 DSP Modules

The following descriptions detail the various C++ classes that implement various DSP functions required to process

and demodulate the I/Q data stream.

Radio 1/Q Data

\ 4

Noise Blanker

A

Frequency
Translate

\ 4

Decimation

> S-Meter Power

Demodulation

AN

AM

Y

SAM

FM

SSB/CW

Bandpass
Filtering

The raw data that comes from the RFSPACE Radios is formatted as integer | and Q data with data widths of either
16 or 24 bits. The low level I/O routines convert the integer data to floating point scaled data where the maximum
magnitude is +-32767.0. The file datatypes.h defines several data types and structures to use in processing the 1/Q

complex data.

TYPEREAL //Real floating point data
TYPECPX //Complex floating point data
TYPESTEREO16 //2 Channel 16 bit integer data
TYPEMONO16 //1 Channel 16 bit integer data

The underlying floating point type can be set as single or double precision but for CuteSDR it is set as double.
The complex data type “TYPECPX” and “TYPESTEREO16” are structures with member elements .re and .im.

The RFSPACE radio I/Q data is base band complex data that has a “zero” frequency equal to the receiver's NCO

exit

center frequency and a bandwidth that is the output sample rate of the radio. The radios can be tuned in 1 Hz steps from

0 to around 30 MHz depending on the model. The sample rates range from 50KHz to 2MHz depending on the model.

CuteSDR only supports a handful of sample rates to keep things simple.

Most DSP classes implement their main data processing function with the same format parameter list. These
functions can be overloaded if the data is complex or real. They return the number of processed samples.

“int ProcessData(NumberOfSamples, PointerTolnBuffer, PointerToOutBuffer)”

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

18

4.5.FFT (Cfft Class)

Th Cfft class implements a fast Fourier transform and several methods to help in creating data formatted for use in a
spectrum display. The low level FFT routines were written by Takuya Ooura and a C++ wrapper was put around it as well

as some extra methods for creating power spectral data.

Setup sample, size etc.

Fast Convolution Interface

SetFFTParams()

FwdFFT() RevFFT()

The FwdFFT() and RevFFT() methods provide a raw FFT interface for performing fast convolution which is used in

the main DSP filter.

The PutinDisplayFFT() and GetScreenintegerFFTData() are used to create formatted spectrum data that is easy to
use in displaying power spectrum. Display parameters such as screen size in pixels, frequency range, and amplitude
range in dB are used to format the data for easy display.

Ver. 1.01 2011-10-20

PutinDisplayFFT()

GetScreenintegerFFTData()

\/

Spectrum Data Interface

Copyright 2011 by Moe Wheatley

19

4.6. CDemodulator Class

The CDemodulator class encapsulates all the demodulator functions and takes the raw I/Q data from the radio and

outputs data processed to go to the sound card.

ProcessData(in, out) / Setup Parameters /

CDemodulator

CDownConvert CSshDemod

CFastFIR | CFmDemod

CSMeter CAgc CAmDemod

The following code segment performs all the demodulator processing steps:

/lperform baseband tuning and decimation
int n = m_DownConvert.ProcessData(m_InBufPos, m_pDemodInBuf, m_pDemodInBuf);
/lperform main bandpass filtering
n = m_FastFIR.ProcessData (n, m_pDemodIinBuf, m_pDemodTmpBuf);
/lperform S-Meter processing
m_SMeter.ProcessData(n, m_pDemodTmpBuf, m_OutputRate);
/lperform AGC
m_Agc.ProcessData (n, m_pDemodTmpBuf, m_pDemodTmpBuf);
/Iperform the desired demod action
switch(m_DemodMode)
{
case DEMOD_AM:
n = m_pAmDemod->ProcessData(n, m_pDemodTmpBuf, pOutData);
break;
case DEMOD_SAM:
n = m_pSamDemod->ProcessData(n, m_pDemodTmpBuf, pOutData);
break;
case DEMOD_FM:
n = m_pFmDemod->ProcessData(n, m_DemodInfo.HiCut, m_pDemodTmpBuf, pOutData);
break;
case DEMOD_USB:
case DEMOD_LSB:
case DEMOD_CWU:
case DEMOD_CWL:
n = m_pSsbDemod->ProcessData(n, m_pDemodTmpBuf, pOutData);
break;

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

20

4.7. CDownConvert Class

/ProcessData(in, out)/ /SetDataRate(InRate, MaxBandwidth)/

™\

«

CDownConvert

CHalfBand11TapDecimateBy2

CCicN3DecimateBy2

The CDownConvert class performs two functions, frequency translation and decimation.

Complex I/Q
Baseband Data
From Radio

— Qé

Dec 2

I

Dec 2

;

Frequency Shifted
Decimated Complex
I/Q Data

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

CHalfBandDecimateBy2

21

4.7.1 Frequency Translation

The input signal is first shifted within the receiver pass band by performing a complex frequency translation. This is
useful in order to tune to signals within the bandwidth without having to re-tune the radio center frequency which would
shift the waterfall display and change the position of all the other signals.

Fc
Fc-Fs A Ex Fc+Fs
!
- | .
-Fs 0 +Fs
/,,,/”/Translate and
- Decimate
- -
-Fs/N 0 +Fs/N
Fx-Fs/N Fx Fx+Fs/N

The frequency translation is done by creating a complex software NCO and complex multiplying each input sample
by the real and imaginary parts of the NCO generator. This requires four multiplies and 2 adds. More importantly, it
requires calculating a new sin and cos for every input sample. Since this runs at the highest sample rate in the system, it
is important to make this process as efficient as possible.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 22

| Data

Q Data

In the CDownConvert class, there are three methods implemented to calculate the sin and cos. They are “#ifdef'ed

Cos(WnT)

Cos(WnT)

Phase
Accumulator

so one can compile using any one of the three methods to see which is best.

Method #1: Use standard C library function calls.

Osc.re = cos(m_NcoTime);
Osc.im = sin(m_NcoTime);
m_NcoTime += m_Ncolngc;

Method #2: Call Intel Pentium assembly language instruction that calculates sin and cos in one instruction.

asm volatile ("fsincos" : "=%&t" (dAASMCos), "=%&u" (dAASMSin) : "0" (dPhaseAcc));

dPhaseAcc += m_Ncolnc;
Osc.re = dASMCos;
Osc.im = dASMSin;

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

”

23

Method #3: Create a software “Quadrature Oscillator” that generates the sin and cos signals.

/[Called once to set the NCO frequency:
static TYPECPX m_Oscf1;
m_Ncolnc = K_2PI*m_NcoFreq/m_InRate;
m_0OscCos = cos(m_Ncolnc);
m_0OscSin = sin(m_Ncolnc);
m_Osc1.re = 1.0; /finitialize unit vector that will get rotated
m_Osc1.im = 0.0;

/[Called every sample time:
TYPEREAL OscGn;
Osc.re =m_Osc1.re * m_OscCos - m_Osc1.im * m_OscSin;
Osc.im =m_Osc1.im * m_OscCos + m_Osc1.re * m_OscSin;
OscGn = 1.95 - (m_Osc1.rem_Osc1.re + m_Osc1.im*m_Osc1.im);
m_Osc1.re = OscGn * Osc.re;
m_Osc1.im = OscGn * Osc.im;

This method takes a complex unit vector and rotates it every sample time by multiplying the last vector by e(je)

Euler's Formula is one of the more important formulas to know as it gives a way to convert between the complex
exponential notation and the more implementable quadrature 1/Q notation.

e’ =cos(x)+ jsin(x)

Using Euler's formula and the fact that Theta is a constant for a fixed frequency, the calculations are simply
multiplies and additions.

yi{n)=y,(n=1)cos(@)=y, (n—1)sin(O)
y,(n)=y.(n=1)sin(©)+ y (n—1)cos(O)

In order to keep the amplitude from changing due to round off errors, a simple agc calculation is done. A block
diagram of the process is shown below.

This method is from Richard Lyons book “Understanding Digital Signal Processing” where he derives and explains
the quadrature oscillator in detail. The constants cos(K) and sin(K) are calculated once every time the frequency is
changed.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

24

A

GAIN

K = 2PI*NcoFreg/SampleRate

|

>
Y
-1
cos(K) z
SUM yi(n-1)
<«
sin(K)
{SUM ’
ya(n-1)
cos(K) 1
z

yi(n)

yq(n)

Preliminary tests show that the quadrature oscillator is the fastest of the three methods. There does not seem to be
any degradation in signal purity as long as double precision math is used.

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

25

4.7.2 Decimation Stages

The next step after frequency translation is to decimate the signal to a lower sample rate before performing further
processing. This will reduce the processing load. The scheme used by CuteSDR is to run multiple stages that each
decimate by a factor of 2 until a sample rate is achieved that is just above the rate needed to support the desired signal
bandwidth. Since it is dividing by 2, the worst case rate would be twice what was actually needed.

InRate

i

Dec by 2

Dec by 2

N Stages

Dec by 2

'

OutRate=InRate/2N

Each decimate by 2 stage has to filter out all everything that can alias into the desired pass band before taking every
other sample as output.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 26

The key filter requirement for each decimation stage is the alias free bandwidth after decimation. If the final required
bandwidth is 3KHz for example, and the input sample rate is 1Mhz, then the alias filter only needs to protect the 3KHz
final bandwidth. This greatly relaxes the filter requirements of the faster rate stages. As the sample rate is reduced, the
filter bandwidths get more critical since the desired bandwidth is a greater percentage of the total sample rate bandwidth.

A
alias
Filter
o -
- » Fs/4 Fs/2
Desired Bandwidth
Small Percentage BW
alias
A
Filter
.':. >
0 Fs/4 Fs/2
- >

Desired Bandwidth
Large Percentage BW

The system design goals for the decimation stages is to have -140dB alias rejection so this sets the limits each kind
of filter can support given the sample rate and desired final bandwidth.

Two different methods of decimating by 2 are used. One is using a CIC (Cascaded Integrator Comb) filter/decimator
stage. Normally this type filter is used in hardware decimation stages as it does not require multipliers. They are not
normally used in floating point applications since the integrator stage depends on 2's complement numbers to prevent
overflow.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 27

Again from Richard Lyons book “Understanding Digital Signal Processing”, a method called polynomial factoring can
be used to create filters with the same transfer function but without the integration recursive feedback terms. A 3™ order

CIC filter is implemented with this method. Odd and even samples are processed separately and combined for the
decimated output.

Hcic3(Z):(1+Z_])3:1+3Z_]+3Z_2+Z_3

(1+z7'Y [P #2

Xin
v - #2 — ® Fodd=1+37"
Z'1 YOUt
L > # 2 —w» Feven=3+z"

This is the implementation of the CIC order 3 complex decimation filter. Note there is a gain factor to keep total gain
at unity.
for(i=0,j=0; i<InLength; i+=2,j++)
{ //mag gn=8
even = plnDatali];
odd = pInData[i+1];
pOutData[j].re = .125*(odd.re + m_Xeven.re + 3.0*(m_Xodd.re + even.re));
pOutData[jl.im = .125%(odd.im + m_Xeven.im + 3.0*(m_Xodd.im + even.im));
m_Xodd = odd;
m_Xeven = even,;

}

The CIC filter is only useable for the first couple of stages when going from a high sample rate to a narrow final

bandwidth. Below shows the frequency response for the CIC order 3 filter and the percent sample rate of alias free
bandwidth it will support.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 28

Inphase Filter Frequency Response
0

3rd Order CIC Decimate by 2

@ 40 -
£
@
!
2 -60
=
=)
®
=
-80 -

100 Alias free Width is .5 - .4985 = .0015*Samplerate

-120 | | |
0.00 0.0% 0.10 0.15

020 025 030 035 0.40 . :
Frequency in Hz

For Decimate by 2 stages that require a larger percentage BW of the sample rate, Half-Band filters are used.
These filters are just FIR filters where every other coefficient is zero except for the center coefficient. This reduces
the calculation load by almost a factor of 2 since the zero coefficients need not be calculated. The restriction of these

filters is that the transition band is always centered around Fs/4. This is almost ideal for a decimate by 2 filter stage since
that is where the cut off needs to be anyway.

An example 5 Tap Half-band filter. Note that H1 and H3 are zero so need not be calculated.

Xin

»| Delay

H4

Yout

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley 29

Below is a magnitude plot of a 11 tap Half-band filter designed to have a maximum stop band attenuation of -140dB.

Inphase Filter Frequency Response
20

-20 C
W

&
N

11 Tap Halfband Filter

Alias free Width
(.5-.475) = .025 * Sample Rate

Magnitude in dB

=100 -+

=120 +

=140

-160 | | | | EE.

000 0.05 010 015 020 025 030 035 040 045 0.50
Frequencv in Hz

Increasing the number of taps increases the alias free bandwidth but there is a point of diminishing returns.

CuteSDR implements up to a 51 Tap filter but in actuality only up to about a 27 Tap is ever required. The first
several stages use the 11Tap Half-band filter so a version of it was written that “unrolled” the inner calculation loop for
faster execution.

This is a snippet of the 11 Tap Half-band calculations showing the fixed MAC operations.

for(int i=0; i<(InLength-11-6)/2; i++)

(*pOut).re = HO*pIn[0].re + H2*pIn[2].re + H4*pIn[4].re + H5*pIn[5].re
+ H6*pIn[6].re + H8*pIn[8].re + H10*pIn[10].re;
(*pOut++).im = HO*pIn[0].im + H2*pIn[2].im + H4*pIn[4].im + H5*pIn[5].im
+ H6*pIn[6].im + H8*pIn[8].im + H10*pIn[10].im;
pln += 2;
}

All other Tap sizes are executed using a more generic implementation but since these larger tap sizes are used at
the lower sample rates, execution time is not an issue.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 30

The CDownConvert class implements the Decimation stages by creating a table of pointers to each of the decimation
stages based on each stages bandwidth requirements. The SetDataRate() function takes the input sample rate and final
maximum required Bandwidth as parameters and returns the final sample rate from the decimate by 2 stages.

/Noop until closest output rate is found and list of pointers to decimate by 2 stages is generated
while((f > (m_MaxBW / HB51TAP_MAX)) && (f > MIN_OUTPUT_RATE))
{

if(f >= (m_MaxBW / CIC3_MAX)) //See if can use CIC order 3
m_pDecimatorPtrs[n++] =
new CCicN3DecimateBy2::CCicN3DecimateBy?2;
else if(f >= (m_MaxBW / HB11TAP_MAX)) //See if can use fixed 11 Tap Halfband
m_pDecimatorPtrs[n++] =
new CHalfBand11TapDecimateBy2::CHalfBand11TapDecimateBy2();
else if(f >= (m_MaxBW / HB15TAP_MAX)) //See if can use Halfband 15 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB15TAP_LENGTH, HB15TAP_H);
else if(f >= (m_MaxBW / HB19TAP_MAX)) //See if can use Halfband 19 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB19TAP_LENGTH, HB19TAP_H);
else if(f >= (m_MaxBW / HB23TAP_MAX)) //See if can use Halfband 23 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB23TAP_LENGTH, HB23TAP_H);
else if(f >= (m_MaxBW / HB27TAP_MAX)) //See if can use Halfband 27 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB27TAP_LENGTH, HB27TAP_H);
else if(f >= (m_MaxBW / HB31TAP_MAX)) //See if can use Halfband 31 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB31TAP_LENGTH, HB31TAP_H);
else if(f >= (m_MaxBW / HB35TAP_MAX)) //See if can use Halfband 35 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB35TAP_LENGTH, HB35TAP_H);
else if(f >= (m_MaxBW / HB39TAP_MAX)) //See if can use Halfband 39 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB39TAP_LENGTH, HB39TAP_H);
else if(f >= (m_MaxBW / HB43TAP_MAX)) //See if can use Halfband 43 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB43TAP_LENGTH, HB43TAP_H);
else if(f >= (m_MaxBW / HB47TAP_MAX)) //See if can use Halfband 47 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
else if(f >= (m_MaxBW / HB51TAP_MAX)) //See if can use Halfband 51 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2::CHalfBandDecimateBy2(HB51TAP_LENGTH, HB51TAP_H);
f/=2.0;
}

Since all the Decimate by 2 stages are derived from a pure virtual class, the list of pointers can be used to call the
different stages in a simple loop. This code segment runs until a null pointer is encountered. The input buffer and output
buffer is the same so each stage operates on the previous stages data.

int n = InLength;
intj=0;
while(m_pDecimatorPtrs[j])

{
}

n = m_pDecimatorPtrs[j++]->DecBy2(n, plnData, plnData);

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 31

4.7.3 Design Verification

To test the decimation stages, a complex 0dB sweep generator was implemented that sweeps from -1MHz to 1MHz
with a sample rate of 2Msps (the pass band of +-1500Hz was skipped). By selecting the narrowest bandwidth used for
CW and plotting the peak spectrum of the final decimated output, the aliased power can be seen everywhere except in the
required pass band. The sweep rate was 1000Hz per second so this takes about 30 minutes to complete. Note the
highest signal in the pass band is <-150dB in the +-1500Hz range.

= CuteSDR Test Bench

?)X

Update 1SHz %

PreFilter v

Enable Peak

D Tirme Darnain

Signal Generator Time Domain Display

Start -1000 KHz |% | |Pwr 0 dB £ Gen On Werk 100 Range i
+ | | 1000000 =

Skop 1000 KHz & Pulse Mode Horz 1 mSec -
Sweep 1000 HzfSec 5| |width 0ms 3 Trig Lewvel 5 s
Maise -160 dB 5 Petiod 1000 ms 5 Meg Edge w

Ver. 1.01 2011-10-20

Copyright 2011 by Moe Wheatley

32

A similar sweep was done to check the widest bandwidth modes. For the +-15KHz wide bandwidth, the alias
rejection is < -140dB.

[Time Domain Enable Peak Update 15Hz & PreFilter ~

Signal Generator Timne Comain Display
Start -1000 KHz % | |Puwr 0 dB e Gen on Wert 100 Range e
- | 1000000 -
Skop 1000 KHz - Pulee Mode Horz 1 mSec -
Sweep 1000 HzjSec % widthoms - Trig Level 5 e
Moise -160 dE o Period 1000 mS o Meq Edge “

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

33

4.8. Primary Filtering (CFastFIR Class)

After the 1/Q signal stream has been decimated to a lower sample rate, the next processing step is to filter it so that
just the desired signal is allowed to pass. Since different signal types have different bandwidths, this filter must be
adjustable as well as have very sharp transition regions to eliminate adjacent signal interference. The FIR filter is the filter
of choice for this application as it can provide extemely sharp transition regions and very narrow bandwidths with constant

phase response.
4.8.1 Filter Design

The filter coefficients could be pre-calculated and stored in a table if only a few filters are needed. In CuteSDR, the
main filter specifications are user configurable “on the fly” so must be designed in real time. The CFastFIR class has a
function SetupParameters(..) that takes as parameters the Low Cutoff and High Cutoff filter frequencies, as well as a
frequency offset and the sample rate.

A
Desired Filter

Fs/2 < > +Fs/2
A0 A

Lcut Hcut

The first step in the filter design is to create a prototype Low Pass filter whose cut off frequency is half the width of
the desired filter.
A

Fs/2 » +Fs/2
A 0 A

-(Hcut-Lcut)/2 (Hcut-Lcut)/2

One way to design such a filter is by the “Windowed Sinc Filter” method. An ideal complex “brick wall” low pass FIR
filter with a cut off of +-F is described by a sinc() function.

sin(2 Itht)_ sin(2m Ft)

¢ 2nF,t nt

When t is zero, the sinc(0) term is 2 F..
This function has the following shape:

sinc(t)=2F

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 34

annu(\vﬂU UﬂUf\UﬂUx\v

This is the impulse response of an ideal lowpass filter. In order to be an ideal filter the impulse response must be
infinite which would require a FIR with an infinite number of taps and a very patient user to wait for the signal to come out
the other end.

If one just truncates the filter taps, the frequency response is not very good. Below shows a 1000 tap FIR whose

coefficients are just truncated:

Complex Filter Frequency Response
20 -

0

20 4

<40

60 -

€0 -

-100 -

120

-140 -

-160 -

180 i i i i i i i ; i
05 04 03 02 0.1 00 0.1 0.2 03 0.4 05

By multiplying the coefficients by a windowing function, a much better response can be obtained. Below shows the
same filter as above but after applying a window function.

Complex Filter Frequency Response
20 -

0

20 4

40

60

80 +

-100 4

-120 +

-140 4

-160

180 4 H + H +
05 04 03 02 0.1 0.0 01 02 03 04 05

There are many windowing functions available and trade off transition region sharpness and stopband rejection and
other characteristics. CuteSDR can be compiled to use several different windows and others can be easily added.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 35

After a Low Pass complex filter is designed, it needs to be shifted in frequency by (HighCut+LowCut)/2 to meet the
original high and low cut specification.

Shift LP filter by A
(Hcut+Lcut)/2

Fsi2 < » +Fs/2

(Hcut+Lcut)/2

The complex low pass filter coefficients can be modified to shift the center frequency by multiplying them by ejwt.
This comes directly from the “Frequency Translation Theorem” (Google is your friend).

h(t)e(j“’°t)<——>F(u)—u)0)

Again using Euler's formula results in multiplying the real coefficients by cos(won) and the imaginary coefficients by
sin(won). Where n is the nth index from the center coefficient.

The code segment below shows the design procedure for producing the bandpass filter coefficients:

/lcreate LP FIR windowed sinc, sin(x)/x complex LP filter coefficients
for(i=0; i<CONV_FIR_SIZE; i++)
{
TYPEREAL x = (TYPEREAL)i - fCenter;
TYPEREAL z;
if((TYPEREAL)i == fCenter) //deal with odd size filter singularity where sin(0)/0==
z=2.0 * nFc;
else
z = (TYPEREAL)sin(K_2PI*x*nFc)/(K_PI*x) * m_pWindowTbl[i];
/Ishift lowpass filter coefficients in frequency by (hicut+lowcut)/2 to form bandpass filter anywhere in range
/I (also scales by 1/FFTsize since inverse FFT routine scales by FFTsize)
m_pFilterCoeflil.re = z * cos(nFs * x)/(TYPEREAL)CONV_FFT_SIZE;
m_pFilterCoefli].im = z * sin(nFs * x)/(TYPEREAL)CONV_FFT_SIZE;

One of the input parameters to the filter generator besides the high and low cut frequencies is an offset frequency.
This can be used to shift the filter by an additional amount. This is used to help in demodulating a CW signal so that it is
shifted to an audible tone otherwise tuning exactly to a CW signal would just produce a DC level. By shifting the NCO in
the DownConverter section also by the same amount, the CW signal will be centered in the filter and produce a tone
equal to the frequency shift.

This offset could also be used to shift the output by say 12 KHz so that a low IF digital demodulator could be used
such as in DRM receivers.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 36

4.8.2 Filter Implementation

Implementing sharp cutoff filters require FIR filters with a very large number of coefficients which take up a large
amount of CPU time when the convolution operation is implemented directly. The normal FIR structure is shown below:

X X X
n-1 n-2 n-M+1

In equation form this can be written as:

y<n>=gh<k>x<n—k>

y(n)=h(k)*x(n)
where * represents the operation of convolution. For every new sample this requires multiplying and adding all M-1
previous samples by the corresponding coefficients. As M gets large this becomes CPU intensive.

A useful property of the Fourier transform is that convolution in the time domain is the same as point by point
multiplication in the Frequency domain which one gets after performing an FFT on time domain data.

Flhsx|=F[h}-F|x]
where * is convolution and «is point by point multiplication.

Using the Inverse Fourier transform on this gets back to the time domain after convolution.
hsxx=F " [F{h}-F{x]}} Forproof Google “Convolution Theorem”.

What this means in a practical sense is that one can take the FFT of the input data and take the FFT of the FIR filter
coefficients and just multiply them together point by point. Then take the inverse FFT and the data is filtered and back in
the time domain. This operation it is called Fast Convolution Filtering.

Complex 1/Q Fourier
Input Data > Transform

x(n)
Inverse Fourier Filtered 1/Q
Transform »Data
FIR Filter Fourier
Coefficients_—) Transform
h(k)

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 37

Note that the FIR Filter Coefficients and its Fourier transform need only be calculated once or anytime the filter needs
to change.

While simple in concept, the the actual implementation is not as straight forward. The problem is that the FFT method
creates circular convolution which is because an N point FFT assumes that the input signal is periodic over the period of
N samples. The affect of this is that some of the frequency domain data overlaps into the next FFT data corrupting part of
the output data of each FFT.

The solution is to use an FFT size greater than the FIR size and zero pad the data before performing the FFT. This
way the overlap occurs but we only use the data points that are not affected by it.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 38

The following example from “The Scientist and Engineer's Guide to Digital Signal Processing” By Steven W. Smith,
Ph.D. shows a 256 point FFT and a 51 point coefficient array convolved together using the fast convolution method.
The convolution of an N point FFT and an M point coefficient array results in a N+M-1 point output signal so the
output is 256+51-1 points or 306 samples. Since the FFT output is only 256 points, these extra points wrap around into

the output data array.

I
| b. Impulse response u-.lc. Convelution of (3) and (b} |.
1 1 10
% ﬁ \ % 5 .I'ﬂ'l l'r’ ‘Il'l o
£ | ¥ i — AN
= e
-1 1 -10
-5
B I I I -z T T T = T T T
] 64 £33 gsr 235] £4 iz 2 255 o £ 128 182 255 3l
Sample namber Sample namber Sample number

l ¢ ¢

i__l d. Owerlap of adjecent p;ric-ds !
Pl A A A
EN W AR AN N WA N W AR AN
- i = \ S i i
] 255 R 511 TET

u—.I e. Circular comvralntion |.

A
WA
S \ S
l—— o] oveErap =

. Amplitude
LI

B -

1 1 1
1] B2 1B 152 135

Sampls rumbar

The way around this is to use a larger FFT and pad the data such that the FFT size is greater than the convolution
output length of N+M-1 then one can just discard the overlapped section. The downsize is that part of the FFT is wasted
processing zero data but it is still an efficient method of convolution. Several methods such as overlap-add and overlap-
save can be used. In CuteSDR the overlap-save method was chosen as it is more straight forward. The input buffer
takes L new samples and M-1 samples from the previous block. When FFT size samples are available, the FFT is
performed, multiplied by the coefficients, and then an inverse FFT is performed. The first M-1 samples from the inverse
FFT are discarded leaving L output samples per input block.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 39

L = number of input samples per block
M= Number of FIR Taps
N = Number of FFT Points

< L

>

Input Signal

0

M-1

N Point FFT->Coef Multiply->IFFT

N Point FFT->Coef Multiply->IFFT

L Output samples

| M-1

Discard First

M-1 Data

Points from
IFFT

Ver. 1.01 2011-10-20

N Point FFT->Coef Multiply->IFFT

L Output samples

M-1

L Output samples

Copyright 2011 by Moe Wheatley 40

The code implementation snippet is shown below from the CFastFIR filter class. The while loop gathers enough
samples to be able to perform a complete FFT on CONV_FFT_SIZE samples, perform a complex multiply by the FIR
coefficients, and then perform the inverse FFT to get back to the time domain. The first CONV_FFT_SIZE-1 output
samples are discarded and then the last CONV_FIR_SIZE — 1)-1 input samples are copied back to the beginning of the
input buffer to get ready for the next input data block.

while(inlength--)

j = m_InBufInPos - (CONV_FFT_SIZE - CONV_FIR_SIZE +1);

ifG>=0)

{ //lkeep copy of last CONV_FIR_SIZE-1 samples for overlap save
m_pFFTOverlapBuf[j] = InBuffi];

}

m_pFFTBuf[m_InBufinPos++] = InBuf[i++];

if(m_InBufInPos >= CONV_FFT_SIZE)

{ /lperform FFT -> complexMultiply by FIR coefficients -> inverse FFT on filled FFT input buffer
m_Fft.FwdFFT(m_pFFTBuf);
CpxMpy(CONV_FFT_SIZE, m_pFilterCoef, m_pFFTBuf, m_pFFTBuf);
m_Fft.RevFFT(m_pFFTBuf);
for(j=(CONV_FIR_SIZE-1); j<CONV_FFT_SIZE; j++)
{ /lcopy FFT output into OutBuf minus CONV_FIR_SIZE-1 samples at beginning

OutBuf[outpos++] = m_pFFTBuUf{j];

}

for(j=0; j<(CONV_FIR_SIZE - 1);j++)

{ /[copy overlap buffer into start of fft input buffer
m_pFFTBuf[j] = m_pFFTOverlapBuf{j];

}

/Ireset input position to data start position of fft input buffer
m_InBufInPos = CONV_FIR_SIZE - 1;

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

4.8.3 Filter Analysis

The following graphs are of a couple of CuteSDR's filters. CuteSDR uses a 1025 tap FIR design for all its filters and
a 2048 point FFT to implement the fast convolution filter. It is interesting that for SSB reception, this is all one needs to do
to get sideband audio. Just take the output of the filter and send it to the sound card(after AGC). This works for upper

and lower sideband signals by just filtering out the opposite sideband. Just another benefit that comes from processing
complex 1/Q data.

This is a lower sideband filter from -2800Hz to -100Hz.

Complex Filter Frequency Response

Magnitude in dB
éo
=

100 +

120 +

140 + 'h

160 |

i T T e e e e N I

Frequency in kHz

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 42

The following is a 100Hz wide CW filter with a 1000Hz tone output. For sharper and narrower filters, one could
decimate down further, filter, then interpolate back up to the sound card rate.

Complex Filter Frequency Response

=40

650

-80

Magnitude in dB

-100

-120

-140

-160

400 600 800 1000 1200 1400 1600
Frequency in Hz

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

4.9. SMeter (CSMeter Class)

This class takes the 1/Q data after the main filter and generates power information for use in the S-Meter display.
This class does not implement the actual GUI meter graphics, it just extracts the power data and performs averaging on it
for the GUI display to use.

491 Design

The standard S-Meter is implemented using two averagers with two time constants. An attack time constant of
around 10 milliSeconds is used when a signal is increasing in level and a decay time constant >= 500 milliSeconds is
used when the signal is decreasing. This allows the meter to react quickly to a signal and then hold the reading long
enough for the user to see it.

The simplest averaging filter to implement is the exponential moving average filter. This filter is a simple IR filter with
one delay element and is equivalent to an analog first order RC filter.

Exponential Averaging Filter

This is easily implemented with one line of code:
Ave = ALPHA*newsample + (1-ALPHA)*Ave;
ALPHA is related to the time constant of this filter by:

ALPHA=1—¢ "™ where T is the sample period in seconds.
The time constant of an equivalent RC filter is Tau=1/RC.

The SMeter class block diagram is shown below.

Attack Time
Filter
2 2
x(n) —P» 10log(I*+Q?)
Calc log power Decay Time
9 pow Filter

!

If(AttackAverage>DecayAverage)
DecayAverage=AttackAverage

The block calculates the log power from the input | and Q signal stream and it is averaged using the attack and
Decay averagers. If the Attack average is greater than the Decay average then it is used as the output. The Decay
average is also forced to the Attack average so that it “charges” up at the same attack rate. If the attack average is less
than the Decay average then the slower Decay average is the output.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 44

4.9.2 Implementation

The code segment that implements this is shown here:

/lconvert 1/Q magnitude to dB power

TYPEREAL mag = 10.0*log10((in.re*in.re+in.im*in.im)/ MAX_PWR + 1e-50);

/lcalculate attack and decay average

m_AttackAve = (1.0-m_AttackAlpha)*m_AttackAve + m_AttackAlpha*mag;

m_DecayAve = (1.0-m_DecayAlpha)*m_DecayAve + m_DecayAlpha*mag;

if(m_AttackAve>m_DecayAve)

{ /lif attack average is greater then must be increasing signal
m_AverageMag = m_AttackAve; //use attack average value
m_DecayAve = m_AttackAve; /[force decay average to attack average

}

else

{ /lis decreasing strength so use decay average
m_AverageMag = m_DecayAve; //use decay average value

}

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

4.10. AGC (CAgc Class)

Most radio signals vary in strength over a wide dynamic range due to variable path distances, propagation changes,
power differences, etc. This signal variation can be over 100dB and is much greater than the human ear dynamic range.
This requires some form of gain control to be inserted in the signal chain after the main bandpass filter.

In analog receivers, automatic gain control(AGC) is usually distributed across several gain stages to keep the
individual RF and IF amplifiers from saturating. Since CuteSDR uses double precision floating point for all its signal
processing, it can easily handle the signal dynamic range and the AGC function can operate at a single point in the signal
chain. A reasonable point is right after the main bandpass filtering ahead of the demodulation stage. Most AGC
algorithms operate in the log domain instead of the linear domain due to the large dynamic range of the signals.

Below is a block diagram of the basic AGC system. It can be analyzed in two stages. First is the static or DC gain of
the AGC and the user inputs that affect the gain. Second is the dynamic characteristics of the AGC which deal with time
varying issues. The Delay line in the system allows the AGC to operate on the signal “in the future” to begin AGC
operation before it gets to the output.

x(n)
¢ > Delay @—» y(n)
Envel f
Detector < Slope
AntiLog
< Knee
Log
> AGC
algorithm

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 46

4.10.1 Static AGC Gain Design

Below is a plot of a typical AGC gain transfer function where there are two user adjustable parameters of Threshold
and Slope. Signals below the threshold level are multiplied by a fixed gain and above the threshold, the AGC has a gain
that is a function of the input level. The slope parameter adjusts how much gain adjustment above the threshold is used.

The Threshold adjustment is useful in cases where all the desired signals are well above the noise level so the
threshold can be adjusted such that the background noise is reduced like a soft squelch control.

The Slope adjustment is a more subtle control and makes stronger signals sound louder than weaker ones which can
be more pleasing to the ear. A slope of zero would make all the signals above the threshold appear as the same level
which is probably preferred for digital modes or FM.

Output Magnitude

A
AGC Qutput vs Input

M=MaxOutput | — — —m —_— —_— —_— —_— —_— —_— — — —

p» nput Magnitude

AGC Knee or M=Max Input
AGC Threshold

For simplicity, let M equal the maximum input and the maximum output level. Let S equal the slope of the function
above the threshold.

To implement this AGC function we need to derive an AGC gain vs input magnitude function. Since the gain slope is
in dB, one needs to create a new function of the above Output vs Input function where the input and output are in dB.
Another way to look at it is, what function is needed to multiply the input by in order to achieve the above output function.
Due to the discontinuity at the threshold, one can break the transfer equation in to two parts. Below the threshold one just
multiplies the input by a constant and above the threshold the gain is a function of the input magnitude.

Let the maximum input and output magnitudes equal 0dB for simplicity and the AGC gain function in dB looks like
this:

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 47

AGC Output vs Input (dB)

A
¥ Input dB K 0
< : >
: 0
... SK
5=AGC Slope
Y
Output dB
Next create the AGC Gain vs Input magnitude in dB.
. AGC Gain dB
AGC Gain vs Input (dB) A
S=AGC Slope
K=AGC Knee
------------------ K(5-1)
0
xInputdB ; >
K 0
Y

Below the Threshold Knee K: Gain,(x)=K(S—1)
Above the Threshold: Gain,(x)=x(S—1)
Converting back to the linear domain to be able to multiply by the input signal gives:

Below the Threshold Knee K: Gain(x)z 10X5-1)

Above the Threshold: Gain(x)= 107481 \where magdB(x) is the dB magnitude of the input after being
processed by the AGC algorithm.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

4.10.2 Dynamic AGC Design

For signals whose power is relatively constant like FM, most digital modes, and even AM, the AGC algorithm can be
relatively simple and need only adjust the gain based on a slow average of the signal to adjust for propagation changes.
For signals where the information is contained in the amplitude of the signal such as SSB, AGC operation will by definition
distort the signal so a compromise must be achieved that will allow the signal's amplitude information to pass undistorted
and yet be able to compensate the gain for overall signal strength variations.

The complex input samples are delayed in order for the AGC to begin acting on the samples a little ahead of time.
The delay line is implemented as a circular buffer where the buffer pointer advances instead of shifting the data.
M Sarrple Delay Ling

» 0

e
/ 1

‘(MWew est
\ Oldest 1—— Ptr
N\ N-2
~ \
~ N-1

The code segment for the delay line is:

/IGet delayed sample of input signal

delayedin = m_SigDelayBuf[m_SigDelayPtr];

/lput new input sample into signal delay buffer

m_SigDelayBuf[m_SigDelayPtr++] = in;

if(m_SigDelayPtr >= m_DelaySamples) //deal with delay buffer wrap around
m_SigDelayPtr = 0;

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 49

The design of an AGC system requires a lot of experimentation and trying different schemes. The following diagram
is what was finally settled on:

Fixed Attack Time
» Dual Time Constant
Exponential &verager Delayed /3 [nput
rag Input
; Sliding WWind ow
Peak Detectar Grl:JeSa?er AntiLog
Dual Time Constant AGC' Output

Y

Exponential &verager

Hang Timer

Adjustable
Decay/Hang Time

The first step is to obtain the magnitude of the input I/Q signals. Two ways were implemented with no significant
difference between them.

mag =log(V(1°+0"))
0l))

mag=1log(max (|I
Scaling values are applied so that the maximum is 0dB and also a minimum dB value is added to keep the log
function from blowing up if | and Q are zero.

’

/ 2 2
mag=log % +MINVAL)

The final range of mag is from -8.0 to 0.0 corresponding to -160 to 0 dB of actual signal magnitude.
This is the instantaneous per sample magnitude.

After deriving the instantaneous magnitude, a peak detector is implemented. A sliding window peak detector is used
that outputs the peak magnitude over a specified number of samples. This is like a running average filter except it
calculates the peak instead of the average value. A few optimizations can be used to reduce the CPU load by only
searching through the last N samples when necessary. If the new sample going into the sample buffer is greater than the
current peak or if the last sample being removed from the buffer is not equal to the current peak, then there is no need to
search through the buffer again.

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 50

Input

Wiao-ull

—

M Sample Sliding Window

/[create a sliding window of 'm_WindowSamples' magnitudes and output the peak value within the sliding window
TYPEREAL tmp = m_MagBuf[m_MagBufPos]; //get oldest mag sample from buffer into tmp
m_MagBuf[m_MagBufPos++] = mag; /lput latest mag sample in buffer;
if(m_MagBufPos >= m_WindowSamples) //deal with magnitude buffer wrap around

m_MagBufPos = 0;
if(mag > m_Peak)

{
m_Peak = mag; //if new sample is larger than current peak then use it, no need to look at buffer values
}
else
{
if(tmp == m_Peak) /Itmp is oldest sample pulled out of buffer
{ /lif oldest sample pulled out was last peak then need to find next highest peak in buffer
m_Peak = -8.0; /Iset to lowest possible value to find next max peak
/[search all buffer for maximum value and set as new peak
for(int i=0; i<m_WindowSamples; i++)
{
tmp = m_MagBuf[i];
if(tmp > m_Peak)
m_Peak = tmp;
}
}
}

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley

51

The Peak detector output is then averaged by two separate exponential averagers, The fast attack one is fast to
quickly react to a fast rising signal, and an adjustable decay averager that maintains the gain at a much slower rate so as
not to distort the signal.

Input Pulse

COutput

Trise Teall

v

Dual Tirme Constant
Averager

The dual time constant averager code looks at each new sample and if it is greater than the current average it
assumes a rising waveform and uses the rising time constant. If it is less than than the current average it assumes a
falling waveform and uses the falling time constant.

if(m_Peak>m_AttackAve) //if magnitude is rising (use m_AttackRiseAlpha time constant)
m_AttackAve = (1.0-m_AttackRiseAlpha)*m_AttackAve + m_AttackRiseAlpha*m_Peak;

else /lelse magnitude is falling (use m_AttackFallAlpha time constant)
m_AttackAve = (1.0-m_AttackFallAlpha)*m_AttackAve + m_AttackFallAlpha*m_Peak;

The decay time can also be selected to be a “Hang” timer where the gain is held constant for a specified time then
quickly decays.
A

Input Pulse

Output

Trall

Hang Tirmer

Ver. 1.01 2011-10-20 Copyright 2011 by Moe Wheatley 52

The code is modified such that the Decay fall time is controlled by a counter that holds the current average as long
as the hang time has not expired and the magnitude is still falling.

if(m_Peak>m_AttackAve) //if power is ri